Evaluating the Integral \(\int \frac{\tan x}{\ln(\cos x)} \, dx\)
Step-by-Step Solution
Step 1: Make a substitution:
\[
\text{Let } u = \ln(\cos x)
\]
Differentiate both sides:
\[
\frac{du}{dx} = \frac{d}{dx}[\ln(\cos x)] = \frac{1}{\cos x} \cdot (-\sin x) = -\tan x
\]
\[
\Rightarrow du = -\tan x \, dx
\]
\[
\Rightarrow -du = \tan x \, dx
\]
Step 2: Rewrite the integral:
\[
\int \frac{\tan x}{\ln(\cos x)} dx = \int \frac{-du}{u} = -\int \frac{1}{u} du
\]
Step 3: Integrate:
\[
-\ln|u| + C = -\ln|\ln(\cos x)| + C
\]
\[
\boxed{-\ln|\ln(\cos x)| + C}
\]
Verification by Differentiation
To verify, we can differentiate our result:
\[
\frac{d}{dx} \left[-\ln|\ln(\cos x)|\right] = -\frac{1}{\ln(\cos x)} \cdot \frac{d}{dx}[\ln(\cos x)]
\]
\[
= -\frac{1}{\ln(\cos x)} \cdot \left(\frac{1}{\cos x} \cdot (-\sin x)\right)
\]
\[
= \frac{\tan x}{\ln(\cos x)}
\]
Which matches our original integrand, confirming the solution is correct.
0 Comments