Boolean Algebra Operations - Complete Guide

What is Boolean Algebra?
Boolean Algebra is a mathematical system for logical operations using binary values: 1 (true) and 0 (false).
Basic Operations
Operation | Symbol | Description | Truth Table |
---|---|---|---|
AND | · or ∧ | Output 1 only if all inputs are 1 | A·B = 1 when A=1 AND B=1 |
OR | + or ∨ | Output 1 if any input is 1 | A+B = 1 when A=1 OR B=1 |
NOT | ¬ or ' or ~ | Inverts the input | ¬A = 1 when A=0 |
Boolean Laws
Identity Law: A + 0 = A A · 1 = A Complement Law: A + ¬A = 1 A · ¬A = 0 Commutative Law: A + B = B + A A · B = B · A Distributive: A·(B+C) = A·B + A·C
Example Problem (HSC Level)
Simplify: (A + B)·(¬A + C)
- Apply Distributive Law: A·¬A + A·C + B·¬A + B·C
- Simplify using Complement: 0 + A·C + B·¬A + B·C
- Final form: A·C + B·¬A + B·C
Practice Exercise
Simplify using Boolean laws:
1. A + A·B
2. (A + B)·(A + C)
Applications
- Digital circuit design
- Computer programming (if-else logic)
- Database search queries
0 Comments